SV

(AP)

VIBRATIONS OF CONTINUOUS, RECTANGULAR PLATES IN THE CASE OF OBLIQUE INTERMEDIATE SUPPORTS

P. A. A. LAURA, D. V. BAMBILL AND R. E. ROSSI

Institute of Applied Mechanics (CONICET) and Department of Engineering, Universidad Nacional del Sur, 8000 - Bahía Blanca, Argentina

(Received 30 November 1998)

1. INTRODUCTION

Well known treatises [1, 2] discuss the problem of vibrating, continuous, isotropic plates. On the other hand no studies are available on vibrating, continuous plates in the case where the internal support is oblique with respect to the plate sides. The present study deals with the determination of the fundamental frequency of transverse vibration of continuously clamped and simply supported rectangular plates with an oblique intermediate support whose position in the x-y plane is defined by the linear relation (Figure 1)

$$\beta y = \alpha x + \delta. \tag{1}$$

From the sake of generality it is assumed that the plate material possesses orthotropic characteristics, the isotropic case being then a particular constitutive case. It is important to point out that the case of oblique supports appears in practice due to operational requirements and also due to constructional imperfections. Two independent solutions are obtained in the present study: (1) the classical Rayleigh–Ritz method which is achieved by simple construction of the approximate fundamental mode shape, (2) the finite element method using a well known, standard finite element code [3].

Figure 1. (a) Clamped and (b) simply supported rectangular plates, orthotropic plates with an oblique intermediate support considered in the present investigation.

0022 - 460 X / 99 / 250834 + 08 30.00 / 0

© 1999 Academic Press

Fundamental fre	equency coeffic	cients of plates	shown in figur	$e^{2}(a) (\Omega_{1} = \sqrt{2})$	$/\rho h/D_1\omega_1 a^2$
			<i>u</i> / <i>v</i>		
Co-ordinate function	2/5	2/3	1	3/2	5/2
Isotropic Material	1				
1	61.685	65·200	74·296	101.447	208.331
2	60.830	64.542	73.899	101.270	208.084
3	60.815	64.631	73.880	101.266	208.084
4	60.649	64.376	73.870	101.222	206.860
5	$\overline{60.706}$	64.471	74.000	101.295	205.833
F.E.	57.883	63·221	73.519	100.223	189.523
Orthotropic Mate	rials				
$D_2/D_1 = 1/2, D_k/I$	$D_1 = 1/3, \ \mu_2 =$	0.30			
1	61.551	64.436	71.133	89.787	163·051
2	60.690	63.765	70.726	89.653	163.019
3	60.672	63.754	70.720	80.648	163.012
4	60.501	63.530	70.582	89.640	162.436
5	$\frac{60.555}{60.555}$	$\frac{63.612}{63.612}$	$\frac{70.673}{70.673}$	89.736	161.971
F.E.	55.141	61.943	69.845	89.411	154.914
$D_2/D_1 = 1/2, D_k/I$	$D_1 = 1, \ \mu_2 = 0$	·30			
1	63·355	69·121	80.423	105.977	188·177
2	62.646	68.745	80.350	105.931	187.836
3	62.633	68.739	80.345	105.922	187.774
4	62.426	68.471	80.103	105.889	187.451
5	62.420	68.401	80.022	105.889	187.290
F.E.	59.648	66.519	78.853	105.404	181.956
$D_2/D_1 = 2, D_k/D_1$	$= 1, \mu_2 = 0.3$)			
1	63.612	70.914	87.990	132.971	291.83
2	62.900	70.536	87.887	132.965	291.71
3	62.893	70.530	87.882	132.957	291.70
4	62.698	70.362	87.861	132.775	289.69
5	62.721	70.408	87.888	132.619	287.768
F.E.	60.659	<i>69</i> · <i>428</i>	87.622	129.944	259.800

TABLE 1 Fundamental frequency coefficients of plates shown in figure 2(a) $(\Omega_1 = \sqrt{\rho h/D_1}\omega_1 a^2)$

Notes: 1, equation (A.1); 2, equation (A.2); 3, equation (A.3); 4, equation (A.4); 5, equation (A.5); F.E., finite element results.

Figure 2. Clamped orthotropic (and isotropic) plates considered in the present investigation. (a) oblique support, y = 3bx/a + 2b; (b) support parallel to the y-axis.

2. APPROXIMATE ANALYTICAL SOLUTION

Using Lekhnitskii's well known notation [4] one expresses the governing energy functional in the form

$$J(W) = \frac{1}{2} \iint \left[D_1 \left(\frac{\partial^2 W}{\partial x^2} \right)^2 + 2D_1 \mu_2 \frac{\partial^2 W}{\partial x^2} \frac{\partial^2 W}{\partial y^2} + D_2 \left(\frac{\partial^2 W}{\partial y^2} \right)^2 + 4D_k \left(\frac{\partial^2 W}{\partial x \partial y} \right)^2 \right] dx dy$$
$$- \frac{1}{2} \rho h \omega^2 \iint W^2 dx dy, \tag{2}$$

TABLE 2

Fundamental frequency coefficients of the isotropic plates shown in Figure 2(b) $(\Omega_1 = \sqrt{\rho h/D_1}\omega_1 a^2)$

		a/b				
x_1/a	Co-ordinate function	2/5	2/3	1	3/2	5/2
0.10	1 4 F.E.	$\frac{31.750}{28.605}$ $\frac{27.552}{27.552}$	34·696 <u>31·900</u> –	42.677 <u>40.277</u> 39.272	65·941 <u>64·263</u> –	151·718 <u>150·687</u> 149·622
0.20	1 4 F.E.	35·840 <u>33·405</u> <u>33·036</u>	38.693 <u>36.452</u> –	46·342 <u>44·483</u> <u>44·132</u>	68·910 <u>67·631</u> –	153·805 <u>153·074</u> <i>152·519</i>
0.30	1 4 F.E.	$ \begin{array}{r} 43.124 \\ \underline{41.760} \\ 40.946 \end{array} $	45·906 44·687 –	53·164 52·203 51·458	74·711 <u>74·135</u> —	158·059 <u>157·836</u> <i>157·125</i>
0.40	1 4 F.E.	55·211 54·436 52·401	58.039 <u>57.385</u> –	65·033 <u>64·577</u> 62·504	85·460 <u>85·276</u> –	166·508 <u>166·501</u> 164·668
0.20	1 4 F.E.	64·357 <u>63·191</u> 63·085	67·297 66·281	74·296 73·534 73·402	94·273 93·894	173·918 <u>173·885</u> 173·818

Notes: Co-ordinate function as in Table 1.

		<i>a/b</i>				
x_1/a	Co-ordinate function	2/5	2/3	1	3/2	5/2
0.10	1 4 F.E.	31·616 <u>28·457</u> 27·380	33·888 <u>30·9184</u> –	39·453 <u>36·849</u> 35·729	55·170 <u>53·165</u> –	114·430 <u>113·088</u> 111·958
0.20	1 4 F.E.	35·717 <u>33·272</u> 32·880	37·958 <u>35·671</u>	43·368 <u>41·377</u> 40·955	58·648 <u>57·145</u> –	117·132 <u>116·186</u> 115·708
0.30	1 4 F.E.	$ \begin{array}{r} 43.014 \\ \underline{41.645} \\ 40.806 \end{array} $	45·268 44·028 –	50·552 <u>49·535</u> 48·685	65·295 <u>64·630</u> –	122·561 <u>122·274</u> 121·574
0.40	1 4 5 F.E.	55.113 54.335 $-$ 52.274	57·503 <u>56·839</u> –	$ \begin{array}{r} 62.848 \\ 62.369 \\ - \\ 60.135 \end{array} $	77·240 <u>77·028</u> 	133.079 <u>133.070</u> <u>133.056</u> <i>130.962</i>
0.50	1 4 F.E.	$ \begin{array}{r} 64.263 \\ \underline{63.093} \\ \underline{62.962} \end{array} $	66·809 65·780	72·338 <u>71·546</u> 71·273	86·790 <u>86·366</u> –	142.070 <u>142.026</u> 142.002

Fundamental frequency coefficients of the orthotropic plates shown in Figure 2(b) $(D_2/D_1 = 1/2; D_k/D_1 = 1/3; \mu_2 = 0.30; \Omega_1 = \sqrt{\rho h/D_1}\omega_1 a^2)$

Notes: see Table 1.

where W(x, y) is the amplitude of the fundmantal modeof vbration which will be approximated by the functional relation $W_a(x, y)$ in view of the fact that finding an exact solution will be, at best, an exceedingly difficult task.

It was considered extremely convenient to construct $W_a(x, y)$, in the case of the clamped plate, using the simple polynomial approximations employed in [5] for the case of "plain"* rectangular plate multiplied by functional relations which take into account the presence of an intermediate, oblique support. After several numerical experiments the following approximation was selected when using a two-term solution in view of the fact that it provided minimum upper bounds, the procedure being greatly facilitated by the use of Mathematica [6]:

$$W_a(x, y) = f_1(x)g_1(x)(A_1r_1(x, y) + A_2r_1(x, y)^3),$$
(3)

where

$$f_1(x) = x^4 + \alpha_3 x^3 + \alpha_2 x^2, \quad g_1(x) = y^4 + \beta_3 y^3 + \beta_2 y^2, \quad r_1(x, y) = \beta y - \alpha x + \delta.$$
(4a-c)

*The plain plate is defined as the structural element without the intermediate, oblique support.

Fundamental freque	ncy coefficients d	of the plates shown	in Figure 3(a) (Ω	$_{1}=\sqrt{\rho h/D_{1}}\omega _{1}a^{2})$
		a/b		
2/5	2/3	1	3/2	5/2
Isotropic Material				
$\frac{40.336^{(1)}}{42.837^{(2)}}$ $38.190^{(\text{F.E.})}$	<u>43.661</u> 46.224 42.051	<u>50.965</u> 52.933 49.462	<u>69·495</u> 69·805 66·661	131·505 <u>130·227</u> 118·045
Orthotropic Materi	als			
$D_2/D_1 = 1/2, D_k/D_1$	$\mu_1 = 1/3, \ \mu_2 = 0.36$	0		
<u>40</u> · <u>233⁽¹⁾</u> <u>42</u> ·664 ⁽²⁾ <i>37</i> ·980 ^(F.E.)	<u>43·166</u> 45·758 41·485	<u>49·134</u> 51·381 47·697	$\frac{63 \cdot 237}{64 \cdot 409} \\ 61 \cdot 442$	$\frac{109.531}{108.170}$ $\frac{108.170}{102.343}$
$D_2/D_1 = 1/2, D_k/D_1$	$\mu_1 = 1, \ \mu_2 = 0.30$			
$\frac{42 \cdot 277^{(1)}}{44 \cdot 854^{(2)}}$ $40 \cdot 433^{(F.E.)}$	$\frac{48 \cdot 285}{50 \cdot 700}$ $46 \cdot 817$	<u>58·875</u> 60·871 57·603	<u>79.758</u> 80.936 78.288	136·496 <u>135·651</u> 131·608
$D_2/D_1 = 2, \ D_k/D_1 =$	= 1, $\mu_2 = 0.30$			
$\frac{42 \cdot 421^{(1)}}{45 \cdot 021^{(2)}}$ $40 \cdot 647^{(\text{F.E.})}$	$\frac{49\cdot244}{51\cdot530}$ $47\cdot820$	$\frac{62.716}{64.095}$ 61.120	92·928 <u>92·453</u> 88·927	183·760 <u>183·541</u> 164·577

Notes: ⁽¹⁾ n = 3, m = 1, equation (5): ⁽²⁾ n = 1, m = 3, equation (5): ^(F.E.) finite element results.

and where α_3 , α_2 and β_3 , β_2 are obtained substituting equations (4a) and (4b) in the essential boundary conditions of the clamped plate. Three term approximations have also been experimented (see Appendix A). When considering the simply supported case the following approximation was employed:

$$W_a(x, y) = \left(A_1 \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} + A_2 \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b}\right) (\beta y - \alpha x - \delta), \qquad (5)$$

where n and m are integer optimization parameters which allow for minimization of the fundamental eigenvalue [7].

3. NUMERICAL RESULTS

Table 1 shows values of the fundamental frequency coefficient for an isotropic and orthotropic clamped rectangular plates considering a particular location of the oblique support; see Figure 2(a). The frequency coefficients have been obtained using different co-ordinate functions and are compared with results

Figure 3. Simply supported orthotropic (and isotropic) plates considered in the present investigation. (a) oblique support, y = 3bx/a + 2b; (b) support parallel to the y-axis.

obtained using the finite element method*. The minimum analytical result has been underlined. In general the agreement with the finite element approach is very good from a practical view point.

Tables 2 and 3 deal with clamped isotropic and orthotropic plates, respectively when the intermediate support is parallel to the *y*-axis. The agreement with the values obtained by means of the finite element method is very good for all the situations considered.

	$(\Omega_1 = \sqrt{ hoh}/D_1\omega_1 a^2)$						
			a/b				
x_1/a	2/5	2/3	1	3/2	5/2		
0.10	20·267 ⁽¹⁾ 19·080 ^(F.E.)	22.570	27·340 26·073	38·769 _	77·240 75·675		
0.20	23·571 ⁽¹⁾ 22·581 ^(F.E.)	25.854	30·566 29·644	41.859	80·087 <i>79·183</i>		
0.30	28·863 ⁽¹⁾ 27·651 ^(F.E.)	31.202	35·964 <i>34</i> ·899	47·249 _	85·328 <i>84·481</i>		
0.40	36·880 ⁽¹⁾ 34·864 ^(F.E.)	39.423	44·481 <i>42·495</i>	56.152	94·152 92·502		
0.20	42·472 ⁽¹⁾ 41·059 ^(F.E.)	45·200 _	50·554 <i>49·351</i>	62·682 _	101·828 <i>101·172</i>		

TABLE 5

Fundamental frequency coefficients of the isotropic plates shown in Figure 3(b) $(\Omega_1 = \sqrt{\rho h/D_1}\omega_1 a^2)$

Superscripts as for Table 4.

*The results have been determined using between 9000 and 10000 elements, depending upon the geometric configurations.

		a/b						
x_1/a	2/5	2/3	1	3/2	5/2			
0.10	20·198 ⁽¹⁾ 19·010 ^(F.E.)	22.260	26·252 24·948	35.140	63·273 61·414			
0.20	23·506 ⁽¹⁾ 22·514 ^(F.E.)	25.570	29·269 28·622	38·473 _	66·642 65·583			
0.30	28·801 ⁽¹⁾ 27·587 ^(F.E.)	30.944	35·074 <i>33</i> ·986	44·196 _	72·719 71·745			
0.40	36·818 ⁽¹⁾ 34·800 ^(F.E.)	39·183 _	43·693 <i>41·683</i>	53.477	83·209 80·835			
0.50	42·408 ⁽¹⁾ 40·993 ^(F.E.)	44.965	49·809 48·588	60·198 _	91·123 90·392			

TABLE 6 Fundamental frequency coefficients of the isotropic plates shown in Figure 3(b) $(D_2/D_1 = 1/2; D_k/D_1 = 1/3; \mu_2 = 0.30; (\Omega_1 = \sqrt{\rho h/D_1 \omega_1 a^2})$

Superscripts as for Table 4.

Table 4 depicts fundamental frequency coefficients for simply supported isotropic and orthotropic plates for a particular location of the oblique support; see Figure 3(a). It is again observed that the agreement with the values determined by means of the finite element method is good from an engineering viewpoint.

Tables 5 and 6 present fundamental eigenvalues for simply supported isotropic and orthotropic plates, respectively, when the support is parallel to the *y*-axis. The agreement with the finite element method is quite good for all the situations considered.

In summary: the proposed analytical approach yields reasonable accuracy for a rather complex elastodynamics problem. Certainly its scope and range of validity is modest when one compares with the finite element algorithmic procedure but allows for the determination of first order design values with a minimum amount of difficulty. Admittedly the analytical approach yields, in some instances, numerical results which are rather high upper bounds.

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET Research and Development Program and by Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur.

LETTERS TO THE EDITOR

REFERENCES

- 1. R. D. BLEVINS 1979 Formulas for Natural Frequency and Mode Shape. New York: Van Nostrand Reinhold.
- 2. A. W. LEISSA 1969 NASA SP 160. Vibration of plates.
- 3. Reference Manual 1997 Linear Stress and Vibration Analysis Processor Part Number 6000.501, revision 2.02. Pittsburgh. Professional Mech/E.
- 4. S. G. LEKHNITSKII 1968 Anisotropic Plates. New York: Gordon & Breach.
- 5. P. A. A. LAURA and B. F. SAFFEL 1967 *The Journal of the Acoustical Society of America* **41**, 836–838. Study of small amplitude vibrations of clamped rectangular plates using polynomial approximations.
- 6. S. WOLFRAM 1996 *The Mathematica Book*. Cambridge: Wolfram Media/Cambridge University Press; third edition.
- 7. P. A. A. LAURA 1995 Ocean Engineering 22, 235–250. Optimization of variational methods.

APPENDIX A

Different approximations used in the case of the clamped plate:

$$W_a(x, y) = A_1 f_1(x) g_1(x) r_1(x, y), \tag{A.1}$$

$$W_a(x, y) = f_1(x)g_1(x)r_1(x, y)(A_1 + A_2r_1(x, y)^2),$$
(A.2)

$$W_a(x, y) = f_1(x)g_1(x)r_1(x, y)(A_1 + A_2r_1(x, y)^2 + A_2r_1(x, y)^4),$$
(A.3)

$$W_a(x, y) = f_1(x)g_1(x)r_1(x, y)(A_1 + A_2r_1(x, y)^2 + A_2x^2y^2),$$
(A.4)

$$W_a(x, y) = f_1(x)g_1(x)r_1(x, y)(A_1 + A_2r_1(x, y)^4A_2x^2y^2).$$
 (A.5)